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The GHS Inequality for a Large External Field 
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We consider general even ferromagnetic systems with pair interactions in a 
nonnegative external magnetic field h. Classes of single-site measures P are 
found such that the GHS inequality is valid for all h/> h, where h/> 0 is a 
number depending on 0 but independent of the size of the system. These 
measures include both absolutely continuous and discrete measures. For p ~ 

a8 o + {(1 - a)/2} �9 (81 + 8_1), some a ~ [0, t), h is determined exactly. 

KEY WORDS: GHS inequality; general even ferromagnetic systems; corre- 
lation inequalities. 

1. I N T R O D U C T I O N  

The G r i f f i t h s - H u r s t - S h e r m a n  ( G H S )  inequal i ty  is a useful tool  in the 
s tudy of la t t ice spin systems with fe r romagne t ic  pa i r  interact ions.  F o r  
example ,  when val id,  it  impl ies  tha t  the average  magne t i za t ion  per  site is a 
concave  funct ion  of h />  0, where  h denotes  the external  magne t ic  field. I t  
also implies  the absence  of spon taneous  magne t i za t ion  except  poss ib ly  at  
h = 0. (9~ However ,  the val id i ty  of the G H S  inequal i ty  for  a pa r t i cu la r  
system depends  upon  tha t  sys tem's  single spin measures .  F o r  example ,  it 
holds  for  s p i n - l / 2  systems(S)-- i .e . ,  for systems with single spin measures  
the Bernoul l i  measure  �89 + 8 l ) - - b u t  no t  for systems with single spin 
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measures 

0a-- aS0 + (8, + (1.1) 

with a ~ (2/3, 1) [Ref. 6, p. 153; Ref. 3, Theorem 1.2(b)]. In this respect, it 
differs from the related Griffiths-Kelly-Sherman inequalities (GKS I, II), 
which hold for systems with arbitrary even single spin measures (Ref. 10, 
w 

Previous work has determined a large class of absolutely continuous 
measures for which the GHS inequality is valid [Ref. 3, Theorem 1.2(c)- 
(d)]. This class contains all absolutely continuous measures with densities 
const • exp ( -  V), where V is an even C 1 function on R, unbounded above 
at infinity, with dV/dx convex on [0, oo). The situation for discrete mea- 
sures is different. Aside from the Bernoulli measure, the measures {Pa) in 
(1.1) with a ~ [0,2/3], and the spin-n/2 measures (n E (2,3 . . . .  }) in Ref. 
4, little is known about other discrete, finitely supported measures for 
which the GHS inequality holds. 

The present paper studies a related problem. Consider, for simplicity, a 
system of N sites all of whose single spin measures coincide with a fixed 
even measure p. We determine large classes of both absolutely continuous 
and discrete p's such that the GHS inequality is valid, not necessarily for all 
h /> 0, but for all h sufficiently large; i.e., h >/h, for some h >t 0. The 
number/~ may depend upon 0, but it is independent of N. An implication 
of our work is that in the thermodynamic limit such a system cannot 
exhibit spontaneous magnetization (i.e., its magnetization is a continuous 
function of h) for [hi > h. 

We remark on work of Dunlop which is similar in spirit to our own. In 
Ref. 2, single spin measures are found such that the pressure is analytic, not 
necessarily in the region {hlh ~ C, Reh 4 = 0} (as in Ref. 7), but in the 
region {h I h ~ C, Ilmhl < Reh} of the complex external field h. His ap- 
proach, like ours, is based on correlation inequalities. We also note that 
there are unpublished results of D. Ruelle concerning single spin measures 
for which the pressure is analytic in the region {h I h ~_ C, IReh I > if} for 
some h" >1 0. 

Section 2 of this paper states our main results. Section 3 gives addi- 
tional facts needed for their proofs. The proofs of the main results are given 
in Section 4. 

2. M A I N  RESULTS 

We consider general even ferromagnetic systems with pair interactions 
in a nonnegative external magnetic field. Such a system is defined by a 
finite family of real-valued random variables {X~;i = 1 . . . . .  N } with joint 
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probability distribution 

"rh~ . . . . .  h~(dxl  . . . .  , d X u ) - -  Z(hl  hu) exp ~ Ji jx ix j  + h~xi 
' " " " ' i , j = l  

N 

X 1"I o i ( d x i )  (2 .1)  
i=1 

where 

Z ( h ,  . . . . .  hN) - - (  exp J r x i  x dr 2 hixi ~I oi(dxi) (2.2) 
J R N  \ i , j = l  y J i=1 i=1 

Unless otherwise noted, we assume that J,j/> 0, h i/> 0 for all i, j E 
{ 1 , . . . ,  N) .  The single-spin measures {0i ; i=  1 . . . . .  N} are assumed to 
belong to $,  which is the class of even probability measures 0 4= 60 
satisfying f e x p ( b x 2 ) o ( d x )  < ~ for all b > 0. 

We say that 01 . . . . .  ON E $ satisfy the GHS inequality for a large 
external field if there exist nonnegative numbers {hi; i = 1 , . . . ,  N)  such 
that for all j ,  k, I E {1 . . . . .  N} and all nonnegative {Jo; i , j  = 1 . . . . .  N )  

03 
~hj~hk~h l l n Z ( h  1 . . . . .  hN)<~O whenever h i >1 ~ , i E { 1  . . . .  , N )  

(2.3) 
We say that a measure 0 ~ E satisfies the GHS inequality for large external 
field if there exists/~/> 0 depending on 0 such that for all N E { 1, 2 . . . .  ), 
all j ,  k, l ~ {1 . . . . .  N) ,  and all nonnegative { J i j ; i , j  = 1 . . . . .  N )  

03 
O h j ~ o h  l nZ t , ( h l  . . . .  ,hN) < 0 whenever h i > ~ h , i ~ { 1  . . . . .  N )  

(2.4) 

In (2.4), Z o - -  Z in (2.2) with 01 . . . . .  ON - -  0. 
In Section 3, we define classes of measures {~(h); h/> 0), where each 

r is defined in terms of an infinite set of correlation inequalities. Our 
first theorem shows the connection between these classes and the inequali- 
ties (2.3) and (2.4). 

T h e o r e m  1. Let { ~ ;  i = 1 . . . . .  N ) be nonnegative numbers and 
01 . . . .  , ON measures in E such that 0i E ~(/~), i E { 1 . . . .  . N }. Then (2.3) 
holds. In particular, if p E E belongs to ~ (h) for some h/> 0, then (2.4) 
holds. 

The next two theorems, Theorems 2 and 3, give a large class of 
measures belonging to ~ (h") for some ff >~ 0. Theorem 2 treats the absolutely 
continuous case and Theorem 3 the discrete case. 
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Theorem 2. Suppose that o(dx) has the form const x e x p [ -  V(x)]dx ,  
where V is an even C 2 function on R such that d V / d x  is convex on [a, m) 
for some a > 0 and d 2 V / d x 2 - ~  oo as x ~  oc. Then there exists/~>~ 0 such 
that 0 ~ ~ (h'). 

Example. If V is an even polynomial of degree d >/4 with positive 
leading coefficient, then V satisfies the hypotheses of Theorem 2. 

For the discrete case, let p E 6 be supported on finitely many points. 
Thus, 0 has the form 

O--  ~ CiSm,~ E (2.5) 
i=1 

where r E {2,3 . . . .  ), m I < �9 �9 �9 < m r, c i > 0, and ~ = l c i  = 1. Theorem 3 
below covers such O. 

Theorem 3. Let p be as in (2.5). 
(a) If r = 2, then P ~ ~ (0). 
(b) If r ~ {3,4,5}, then O E ~(/~) for some/~>~ 0. 
(c) If r E (6, 7 , . . .  ), then suppose the points m i are equally spaced; 

i.e., 

mj+ 2 - -  m j +  1 = m j +  1 - -  mj for j = 1,2 . . . . .  r -- 2 (2.6) 

If (2.6) holds, then P E g (h') for some/~ >/0. 
(d) There is a ~ as in (2.5) with r = 6 which is not in ~(/~) for any 

R e m a r k .  It can also be shown that for r E {6, 7 . . . .  }, a sufficient 
condition to ensure that p ~ ~ (h') for some h" > 0 is that 

m j + 2 > m j + l + m  j foral l  r - 2 > > . j ) [ ( r +  l ) / 2 . ] +  l 

where the notation [ - ]  denotes the greatest integer function. See Ref. 8, 
Chap. 4 for the details. 

The value of Theorems 2 and 3 would be enhanced if one could 
determine, or even estimate, the number/~. While in general this is difficult, 
for the measures {Pa; a ~ (2/3,  1)) in (1.1) (r = 3 in Theorem 3), we have 
the following result. 

Theorem 4. Suppose that 0a = a60~+ [(1 - a)/2](6~ + 8 ~) for some 
a ~ (2/3, 1). Then p~ ~ 6(h), where h = h(a)  is given by 

3 a  - 2 (2 .7 )  c o s h [ / ~ ( a ) ] =  1 + a ( l -  a~ 

Remarks. (1) If a ~ [0 ,2 /3 ] ,  then 0 E  g(0) [see Ref. 3, Theorem 
1.2(b)]. 
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(2) The h-of (2.7) is the best possible since Pa satisfies the single site 
GHS inequality only for h >1/~(a); i.e., if a E (2/3, 1), then 

{h >O[(d'/dh3)ln;aexp(hx)o,,(dx) <O} =(t~(a),m ) (2.8) 

with/7(a) given by (2.7). 
(3) For general e covered by Theorem 2 or Theorem 3, one can derive 

an upper bound on h in terms of the integer • appearing in Lemma 1 below 
and a finite number (depending on nO of the moments of p. The proof is 
based upon an estimate [Ref. l, Chap. 3] of the largest positive roots of the 
polynomials { P(n; h)} in (3.7) below for finitely many n. See [Ref. 8, Chap. 
2] for details. However, in general the estimation of r7 is a formidable task. 

3. THE CLASSES (~(h~)) 

We first define the classes {~(/~)}, then state a lemma, Lemma 1, 
which will be the main technical tool for proving Theorems 2 and 3. 

Let B be the orthogonal matrix 

1 1 1 III 
1 1 - 1  1 - 1  

B - - ~  1 1 - 1  
- 1  1 1 

Given O ~ E, let W -- ( W 1 , W 2, W 3, W4) be a random vector with indepen- 
dent components, each distributed by O. Let 7/4+ denote the set of all 
n -  (n 1 , n2,n 3, n4), where each n, is a nonnegative integer, and define 

4 

(BW)"----" II {(Bw)o) "~ 
a = l  

where (BW),  is the ath component of the vector BW. Denote by Ep{. ) 
expectation with respect to the product measure [I~= lp(dw,) �9 

Definition 1. Given h ~ >/0, define 

6(h)--  ( p lpe E , Ep ( ( BW ) %xp[2h ( BW) l ] )  >10 forall  neT/4+) 

The class ~ (0) coincides with the class 9 described in Ref. 3. We note 
several properties of the (~ (if)}: 

(i) If 0 ~< hi < h2: then ~ (/~,) C_ ~ (h~2). 
(ii) If Pl,P2 E ~(h), then Pl*P2 E ~(h). 

(iii) If (Pi; i = 1,2 . . . .  ) is a sequence of measures in ~(h~), pimp E E 
and supff[x['exp[ffx]&(dx) < oc for each n E (0, 1 , 2 , . . .  ), then p ~ ~(/~). 
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Here, the symbols �9 and ~ denote,  respectively, convolut ion of measures 
and weak convergence of measures. The proofs of these properties are 
elementary.  

In the next  lemma and its proof,' n odd means that each n,, a E 
1 , . . . ,  4}, is odd; n even is defined similarly. 

Lemma 1. Given O @ E, suppose that there exists a nonnegat ive 
integer ~7 such that 

Eo{(BW)" } > 0 for all odd  n satisfying n I /> ~7 (3.1) 

Then  there exists/~ 1> 0 such that p @ ~ (/~). 

Proof. Since the condit ion (3.1) is only on odd n, we may  assume, 
without loss of generality, that 17 is odd. The  evenness of p implies [Ref. 3, 
Theorem 2.6(c)] 

E o { ( B W ) -  } { > 0 if n is even (3.2) 
= 0 if n is neither even nor  odd  

and that if (3.1) holds, then 

Eo((BW)" } > 0  f o r a l l o d d  nET7 4+ satisfying max(nl,na,n3,n4) >1 e 

(3.3) 

We use these facts below. 
For  n E 7/4 and h >/O, we define 

f (n ;  h) -- Eo((BW)"exp{2h(BW)l ) } (3.4) 

Since o ~ $ ,  f (n ;  .) is real analytic. We define the finite set of multi-indices 

~)~--" (nineT/4;/'/2,n3,n4 allodd, max(ni,n2,n3,n4) < t7) (3.5) 

We prove that for all n ~ %,  f (n;  h) >/0 for all h/> 0 and that  there exists 
h ~ ) 0 such that for all n ~ ~ ,  f (n ;  h) >/0 for all h/> /~. This will prove the 
lemma. 

For  fixed n E 7/4, we expand f (n ;  h) in a Taylor  series about  h = 0, 
noting 

f(~)(n; 0) = E ,{  (B W) (n ~+ ~,n2 ..... ')} 2 k (3.6) 

for k ~ (0, 1,2 . . . .  }. First assume n ~ %.  Then  either n 2, n 3, n 4 are not  all 
odd or n 2, n 3, n 4 are all odd and max(nl,n2,n3,n4} >>- ft. In either case, by  
(3.2), (3.3), f (k)(n;  0) >/0 for all k E {0, 1 . . . .  }. Thus, if n ~ %,  f (n ;  h) >/0 
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for all h/> 0. Now assume n E %. We write 

~-"~ f(k)(n; O) o~ f(k)(n; O) 
f ( n ; h )  = E k! hk+  E k! 

k=0 k=~--nl+l  
h ~= P(n;  h) + R(n ;h )  

(3.7) 

By (3.3), R(n; h)/> 0 for all h >/0 and so 

f (n ;  h) > P(n; h) for h >/0 (3.8) 

By (3.6) the lead ing  coe f f i c i en t  of P ( n ; h )  is p r o p o r t i o n a l  to 
Eo((BW)(~'n2'"3'"4)), which is strictly positive by (3.1). Hence for each 
n E %, there exists a number h'(n)/> 0 such that P(n; h)/> 0 for h >/h'(n). 
Defining 

h--- max(h ' (n)  I n E %} (3.9) 

we see by (3.7) t ha t f (n ;h )  >/0 for h/> ft. [] 

4. P R O O F S  OF T H E O R E M S  2, 3, A N D  4 

Proof of Theorem 1. This theorem is proved like Theorem 1.1 in 
Ref. 3, which is its analog for/~ = 0. Alternatively, one can easily adapt the 
proof of the GHS inequality given in Ref. 11. [] 

Proof of Theorom 2. Without loss of generality, we may assume 
that V' is strictly convex on [a, oe). For if V is convex, then for e > 0, 
V~(x)-  V(x) + ex 4 satisfies the hypotheses of the theorem and is strictly 
convex on [a, oe). Our proof of Theorem 2 will show that each p~(dx) 
-- const x e x p [ -  V~(x)]dx E ~(ff) for some h" >/0, and one can prove that h 
can be picked independent of �9 for �9 sufficiently small. By property (iii) of 
the classes (~(h)),  we conclude O0 E ~ (h). 

Define the orthogonal matrix 

1 1 1 1] 
_ - , (  , ( , , )  , , , _ , ,  

A  --11 - 1  1 1  
1 1 1 1 

Given O ~ $ and an invertible 4 x 4 matrix T, we define the measure 0T on 
~;~4 by o r ( F ) =  p(T-1F), where F is a Borel subset of ~4 and p is the 
product measure p(dw) --  1"I 4 = lo(dw~). Define the signed measure ~ on R 4 
by ~ "--PB -PA and let g = g+ - g _  be its Jordan decomposition. Finally, 
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define 

S+ -- {support of o+ } N R  4 and S _ - - { s u p p o r t o f ~ r _ } C 3 N  4 

where N 4 denotes the positive orthant of R e. 
We need two lemmas. The first of these, Lemma 2, is Proposition 4.1 

in Ref. 3. The proof of the second, Lemma 3, will be given below, after we 
complete the proof of Theorem 2. Given s, t E N 4, we write t > s if t~ > s~ 
for each a E { 1,2, 3, 4}. 

Lemma 2. For O E $ and all odd n E 774+ 

Eo((BW)"} = 8  ( w " ~ ( d w ) = 8 (  w " ~ + ( d w ) - 8 (  w"~ (dw) aa~+ aa 4 JR~+ - 

Lemma 3, Under the hypotheses of Theorem 2, S_ is bounded, and 
given any real number R there exists t E S+ with t > (R,R,R,R).  

We now show that there exists an integer fi such that Eo{(BW)" ) > 0 
for all odd n satisfying n 1 > ft. Lemma 1 then completes the proof of 
Theorem 2. We define 

I ~ -  sup{max{sl,s>s3,s4) ls E S_ } 

(If S_ = 0, then set / ~ -  0.) By Lemma 3 there exists ~ ~ S+ such that 
~ >  (/x,/~,/~,/0 and o+ {w[w > ~} > 0. By Lemma 2, 

1 n  Ep{(BW) } > {wlw > -  lnl _ {S_ } 

) ~tnlo+ {W[W > ~ ) -  ~s {S } (4.1) 

where ~--min{~l,~2,~3,~4} and In l - -n l+n2+n3+n4 .  If / , = 0 ,  then 
Ep((BW)"} > 0 for all odd n. I f / ,  > 0, then the right-hand side of (4.1) is 
strictly positive if 

> (4.2) 

This can be achieved for Inl sufficiently large since { >/~. Defining fi to be 
the smallest integer In I satisfying (4.2), we have verified the hypothesis of 
Lemma 1. �9 

Proof of Lemma 3. By definition of ~r, we have 

tl 1]}' cr(dw)= exp - 2 V B- lw)~  --exp -- • V A- lw)~ 1-[dw~ 
a=l a=l a=l 

Define the function l~ on R 4 by 
4 

r ~ 1 [  V((A-Iw)a)- V((B-lw)a)l 
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It is not hard to see that S_ = {w I w ~ R4+, 17(w ) < 0}. Hence Lemma 3 is 
proved once we show that there exists M > 0 such that if w ~ R4+ and 
max{wl,w2,w3,w4} >1 M, then 17(w) > 0. 

Our assumptions on V are that V is even, V' is strictly convex on the 
interval [a, ~ ) ,  and V " ( x ) o  oo as x ~  ~ .  Hence there exists a number 
M > a such that 

V"(x )>sup{V"(y ) ! l y  I < a) for all ix I > / M  

We see that V"(x) > V"(y) whenever Ix[ >/ M and [y[ < Ix[. For W I , W  2 

> 0, define 

f (w, ,w2)--  V"(w, + w2) -  V"(w, - w2) 

Thenf(wl,w2) > 0 whenever w I + w 2/> M and thus whenever max(wl,w2} 
/> M. A short calculation shows that for w > (0, 0, 0, 0), 

P(w) - : w '  + W4dx : x  + w, ~ .  w "  
-Jw~-w4 L-w3 J(Y' 2)dy 

Since I~ is unchanged by permutations of the w,'s, we may assume that 
w~ /> w 4 (so that x >/0 above) and that w 2 = max(wl,w2,w3,w4). Since V" 
is even, f (y ,  w2) is an odd function of y. Thus 

fw j+W4dx  r x + w 3 r ,  w " ~ ( w )  = ~ / :~y, ~) dy 
J~,-w~ Jlx-w31 

which is strictly positive if w 2 = max(wl, w2, w3, w4} /> M. 
The proof of Theorem 3 will be based on two lemmas, Lemmas 4 and 

5. Given p ~ E, we define subsets ~ +  and c~L_ of •4 by 

{ w = (w I , w 2, w 3, w4) [each w i E support(p), 9Tc• 

4 ) 
(Bw)t > O, + IX (Bw)~ > 0 

I .emma 4. Let p E E be as in (2.5). Suppose that for each w E ~ L  
there exist v = v(w) and v' = v'(w), (not necessarily distinct) vectors in @IL+, 
such that for some k = k(w) E (1,2,3,4}, 

[(Bv),[ /> [(Bw)~[ f o r a  ~ (1,2,3,4} and [(Bv)k [ > [(Bw)[g (4.3) 

and 

I(Bv'),t 1> [(Bw), I forct E (1 ,2 ,3 ,4} \ (k}  and (Bv ' ) ,>(Bw),  (4.4) 

Then O ~ ~ (/~) for some/7 > 0. On the other hand, suppose that there exists 



46 Ellis, Newman, and O'Connell 

a w ~ 9IL_ and even integers NI, N2, N3, N4, not all zero, such that 

(Bv)N<(Bw) N for every v E 9IL+ (4.5) 

where N --  ( N  1, N 2, N 3, N4). Then for every/~ >/0, p ~ ~ (/~). 

Proof.  To prove the first part of the lemma, we verify the hypotheses 
of Lemma 1. For each w ~ 9TO+ U 9L_, we define 

4 

r 1] > o 
a = l  

We have for odd n 

so{(sw)") =2 2 
w ~ 0 1 g +  U 91L 

where 

(4.6) 

+1 
8(w) = -I 

for w E ~I~+ 

for w E Orb_ 

Orb+, v = v(w) and v ' =  v'(w), and For each w E 91L_, pick vectors in 
k = k(w)E {1,2,3,4} satisfying (4.3)-(4.4). Clearly we may find positive 
numbers {?(v),?(v')} such that 

P, r > 2 + 
w E G7~+ w ~  

[e.g., let ~(w) = c(w)/(2 • cardinality of r  ) for w = v, v']. We have from 
(4.6) that 

E o ( ( B W ) " } / 2  >1 ~ ,  [6(v)[(Bv)" I + s I - c(w)[(Bw)"[] (4.7) 
w E sJTc 

It follows from (4.3) that for each w ~ 0 i L ,  there exists ~ = ~(w) such that 

~(v)[(Bv)nl - c(w)l(Bw)"[ > 0 if n k >1 

It then follows from (4.4) that there exists ~ = if(w) such that 

~(v')l(Bv')" I - c(w)l(Bw)" I > 0 if n k < ~ and n 1 /> 17 

Consequently we see that the summand in the right-hand side of (4.7) is 
strictly positive provided only that n I /> tT(w). Taking 17--max{rT(w)[w 

91"c ), we conclude that the hypotheses of Lemma 1 are valid and thus 
that p ~ ~ (if) for some ff/> 0. 

Concerning the second half of the lemma, we start from the equation 

/(n; h) "-- E p { ( B W)"exp[  2h(  B W ) l  ] } 

-- 2 ~ 8 (v )c (v ) l (Bv)" lcosh[2h(Bv) l  ] (4.8) 
v E 9re + u G, EfFC_ 
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which is valid for odd n. We prove that p ~ ~ (/~) for any/~ > 0 by showing 
that for any h/> 0, f((1, 1, 1, 1) + nN; h) < 0 for all large n. Given h t> 0, we 
have from (4.8) that 

f((1, 1, 1, 1) + nN;h) < Id(v,h)l(Bv)Nl" -- d(w,h)l(Bw)NI (4.9) 
v ~ i L +  

where w (independent of v) is the one satisfying (4.5), 
4 

d(v, h) "-- 2c(v)cosh[2h(BV)l ] I~ (Bv)~ > 0 
a = l  

and 
4 

d(w, h) "-- 2c(w)cosh [2h (Bw)l ]1 I I  (Bw)J/(cardinal i ty  of ~ +  ) 
ct=l  

It now follows from (4.5) that for any fixed h, there is some ~7(v) so that the 
summand in the right-hand side of (4.9) is strictly negative for n > if(v). 
Thus we see that for any h, the left-hand side of (4.9) is strictly negative for 
all large n [i.e., n >I max(~7(v) Iv ~ Gy~+ )]. We conclude that O ~ ~(h) for 
any h > 0. �9 

Next we state and prove Lemma 5. Given w E R 4, we define an 
ordering (~) among the components {w,) of w by defining w~,(~)w~ if 
either w~, > w~ or w~ = w~ and a I < a 2. For t~ E (1,2,3,4}, we define 
w(~) to be the ath largest component of w in accordance with this ordering. 

l.emma 5.  L e t  w E ~4  s a t i s f y  2 ( B W ) l  = w I + w 2 + w 3 + w 4 > 0. T h e n  

4 

I I  (Bw) < 0  (4.10) 
o~=1 

if and only if w(0 - w(2 ) > wo) - w(4 ) . If (4.10) is valid and v is defined 
by 

( w~, if w~ = w(o or w(4 ) 
v~ -- (4.11) 

w~+(w(~)-w(2)) ,  i fw~=w(2  ) or w(3 ) 

then 
4 

I I  (Bv)o> 0, (By), 
r 

and [(Bv),~[ > I(awLI 

fo ra  E {2,3,4} (4.12) 

Proof. We define u E ~ 4  by u s -  w(~), a ~ (1 ,2 ,3 ,4}.  Then 
= II~= l(Bu)~ �9 We prove the first part of the lemma by showing 

4 II~=l(Bu)~ < 0 if and only if u 1 - u  2 > u 3 - u  4. If the latter inequality 
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holds, then since u I > u 2 ) u 3 /~ //4, 

2(BU)l = u I + u 2 + u 3 + U 4 = W 1 -{" W 2 "{- W 3 Jr W 4 > 0 

2(Bu)2 = u 1 - u 2 Ji- /g 3 - -  1/4 ~ 2(u3 - u4 )  ) 0 
(4.13) 

2(Bu) 3 = Ul + I/2 - -  1/3 - -  I/4 ~ 2(U2 -- U4) ~> 0 

2(Bu)4 = -- ui + U2 "1" 1/3 --  U4 < 0 

and we see that 4 l-I ,= l(Bu)~ < 0. If, on  the other hand  4 ]-I~= l(Bu)~ < 0, then 
( B u ) , 4 = 0  for a ~ { 1 , 2 , 3 , 4 }  and since u 1>/ u 2 )  u 3>/ 1/4, we see that 
(Bu)~ > 0 for a E {1,2,3}. Thus  (Bu)4 must  be negative, which implies 
u I - u 2 > u 3 - u 4. This proves the first part  of the lemma. 

We  now prove the second part  of the lemma. Pick w E N 4 [with 
2(Bw)L > 0] satisfying (4.10) and define v by (4.11). Then  for a ~ {1,2,3,4} 

[ w(1 ), i fw ,  = w(l) or w(2 ) 

v~ = /w(~)  - w(2 ) + w(3), if Wcc = W(3 ) 

L W ( 4 ) ,  if Wa = W(4 ) 

We first show I-[4= t(Bv)~ > 0. Define x E ~ 4  by x~ - -  v( , ) ,  a E { 1, 2, 3, 4}. 
Since 1-I4= ~(Bv)~ = 1-I4= ~(Bx)~ it suffices to prove [ I4=  l(BX)~ > 0. N o w  

x l = x 2 = w ( 1 ) ,  x 3 = w ( ~ ) - w ( 2  ) + w ( 3  ), and x 4 = w ( 4  ). Arguing as in 
(4.13) and  using the fact that, by  the first par t  of the lemma, w(~) - w(2 ) 
> w(3 ) - w ( 4  ) , one easily finds that  (Bx) ,  > 0 for each a E {1,2,3,4}.  This 

implies X-I4=l(Bx), > 0. We  now prove that (Bv)~ >/(Bw)~ and I(Bv).[ 
> I(BwLI for a E {2,3,4}. Since the {w(~)} are a permutat ion of the {w,}, 
we have 

2 ( B y ) l =  v 1 + v 2 + v 3 + t? 4 = 3w(~) - w(2 ) + w(3 ) + W(4 ) 

Using w ( ~ ) - w ( 2  ) > w ( 3  ) - w ( 4  ) and W(l ) >/ w(2 ) /> w(3 ) >/w(4 ), one sees 
that 

2(By) a > w(1) + W(2) "t- W(3 ) -~ W(4 ) = 2(Bw)1 

The proof  that  [(Bv)~ I /> I(BwLI for a ~ {2,3,4} involves different calcula- 
tions for the different possible orderings of the { w~}. Rather  than give the 
uninteresting details, we consider a representative case. Assuming w~ > w 2 
> W 3 > W4, one finds ( B v ) 2  = ( B w ) 2  > 0,  ( B Y ) 3  = ( B w ) 3  > 0,  

2 ( B Y ) 4 =  w 1 - w 2 -t- w 3 - w 4 > w 1 - w 2 - w 3 -1-- w 4 = 21 (Bw)41  [ ]  

Proof of Theorem 3. The case r = 2 is covered by Ref. 3, Theorem 
1.2(a), and the case r = 3 is covered by Ref. 3, Theorem 1.2(b) and by  
Theorem 4, which we prove below. We prove the cases r = 4 and  r = 5 by  
using the first par t  of L e m m a  4; a somewhat  different proof  of these cases 
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is given in Ref. 8, Chap te r  4. In the case r = 4, we m a y  assume without  loss 
of generali ty that  [in the nota t ion  of (2.5)] m~ = - 1 ,  m 2 = - 1  + ~, m 3 
= 1 - 7, m4 = 1 for  some ~ E (0, 1). There  are four  basic possibilities for 
w E s)Fc_ if ~ E (2 /3 ,  1) and  two basic possibilities if ~ E (0, 2/31 (together 
with others ob ta ined  by  pe rmuta t ion  of the components) .  These possibilities 
m a y  be easily listed by  using the first par t  of L e m m a  5. For  each of these 
basic w's, we will display the corresponding v and  v' satisfying (4.3)-(4.4); 
permuta t ions  of the basic w's are handled  by  correspondingly  pe rmut ing  
the v and  v': 

for w = (1, 1 - ~/, 1 - ~7, 1 - 7/), v = v ' =  (1, 1, 1, 1 - 7/) 

f o r ~ / > 2 / 3  and  w = ( 1 , 1 - ~ , 1 - 7 / , - 1 + 7 / ) ,  v - - v ' = ( 1 , 1 , 1 , - 1 )  

f o r w =  (1, 1 - ~/, - 1  + ~ / , - 1  + ~), 

v =  (1,1, - 1 ,  - l  + ~) and  v ' = ( 1 , 1 , 1 , - 1 )  

f o r ~ / > 2 / 3  and  w = ( 1 , - - l + ~ / , - - l + T b - - l + ~ ) ,  

v = v ' =  (1,1, 1 , - 1 )  

In the c a s e r = 5 ,  w e m a y t a k e m  l = - l , m  2 = - 1 + 7 / , m  3 = 0 , m  4 =  1 -  
77, rn 5 = 1. For  w's in 9re_ with no vanishing components ,  we m a y  take v, v' 
as described above  for  r = 4. There  are seven basic possibilities for the 
remaining w's in 9qL if r / ~  (1 /2 ,  1) and  four  basic possibilities if , / E  (0, 

1/21: 

(1, 1 - T/,0,0), (1 ,0 ,0 ,0) ,  (1,0,0,  - 1 + T/), (1 - ~/,0,0,0) 

(1, 1 - ~/, 1 - ~/,0), (1, 1 - 0,0,  - 1 + ~/), (1,0, - 1 + ~/, - 1 + ~/) 

where the latter three are valid only for ~ />  1/2.  It  turns out  that  for  each 
of these seven possibilities we m a y  take v = v' = (1, 1, 1, - 1). 

To  prove  par t  (c) of Theo rem 3, we note  that  by  the first pa r t  of 
L e m m a  4 (with v -- v' and  k = 1) together  with L e m m a  5, it suffices if for  
each w~, w2, w 3, w 4 in the suppor t  of O, w ( 3 ) +  ( w ( o -  w(2))= W(l)- 
(w(2) - w(3)) is also in the suppor t  of p [cf. (4.11) with c~ = 3]. But this is 
clearly the case when  the suppor t  points  of 0 are equally spaced. 

I t  remains  to construct  the } of par t  (d) of the theorem. We  will take 
m 6 = 1/2,  m s = 1 / 2 -  E 2, and  m 4 = 1 / 2 -  r and  show that  for suitably 
chosen small posit ive e, the second half  of L e m m a  4 can  be appl ied with 

W = (m6,m4,ms,m4) and N = (2[xlln,I],2,0,0) (4.14) 

where the nota t ion  [ - ]  denotes the usual greatest  integer funct ion and  
x > 0 is to be de te rmined  later. With  w as in (4.14), we have w E ~C_ (for 
small  e) by  L e m m a  5 and  

(Bw),  = 1 - , - , 2 /2 ,  (Bw)2=  , - , 2 / 2  (4.15) 
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On the other hand, one finds (by listing possibilities) that for every 
v E 63~ +, either 

(Bv)~ = 1 - c/2 + O(e2), I(Bv)21 = e /2  + O(e 2) (4.16) 

[for v = (m6, m6, m6, m4) or  (m6, m6, ms,  m4) o r  (m6, m5, m5, m4) o r  (m5, m5, 
ms, m4) or  permutations of these] or else 

1 + I(nv)21 = 0 ( s  2) (4.17) 
[for v = (m6, m6, m6, m5) or  its permutations] or else 

(nv ) l< �89  + O( ,  ), ](Bv)21 < 1 (4.18) 

(for all other v's in ~c+ ). In order to conclude that for sufficiently small c, 
(4.5) will be valid with w, N given by (4.14), it suffices to show that for 
every v E 631L +, 

K,v-- limsup(Bv)h/e2 <lim(Bw)N/,  2 -  K, w (4.19) 
e~0 ~ 0  

But using the definition of N, we have from (4.15) that 

K" w = lim I [ 1 - e  + O(e 2)]2~t1"'1+~ �9 [e + O(e 2) ] 2 / C 2 }  = 1 (4.20) 
e---~0 t t_ 

while we have similarly that 

1/4, 

K ' ,=  0, 

if (4.16) is valid 

if (4.17) is valid 

If (4.18) is valid, then 

K, < const X[  lim(1/2)2~lln~l/e 2 ] 
L ~-~0 J 

Thus if we choose ~ so that 2~1n2 > 2, we see that/~v = 0 if (4.18) is valid. 
This yields (4.19) and completes the proof of Theorem 3. �9 

Proof of rhoorom 4. A direct calculation [cf. (4.8)] gives for n 2, n 3, 
n4 all odd that 

f (n ;  h) = 2- ("+ '2+ '~+ '4) (  c1[ g(3h)3"'  + g(h)(3 "2 + 3 n3 + 3"')] 

+ ezg(2h)2 ",+'~+"3+'4 - c3g(h)} (4.21) 

where 
2 coshh, if n I is odd 

g(h)'--g.,(h)'-- 
2 sinh h, if n I is even 

and 

e l - - ( 1  - a)3a/2, c2--(1 - a)4/4,  r "-:-- 2(1 --  a)a 3 
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Since f (n ;  h) vanishes  unless n2, n3, n 4 are all odd,  in o rder  that  f (n ;  h) ) 0 
for all n it suffices if 

eL[ g (3h)3  n~ + g ( h ) ( 3  n2 + 3n3 + 3n')] + c 2 g ( 2 h ) 2  ~,+~2+n~+~4 >1 c 3 g ( h  ) 

(4.22) 

for all n I a n d  odd  n 2, n 3, n 4. But for h > 0 and  n] res t r ic ted to be even 
(respectively,  odd) ,  the le f t -hand  side of (4.22) is increas ing in the ni's, a n d  

so it suffices to check the cases n 2 = n 3 = n 4 = 1 and  n I = 0 or 1: 

c 1 3 " , g ( 3 h ) / g ( h  ) + 8 c 2 2 " ' g ( 2 h ) / g ( h  ) + 9c  1 - c 3 >> 0 (4.23) 

I t  is an  e l emen ta ry  fact  that  for h > 0 

k c o s h ( k h ) / c o s h ( h )  >1 s i n h ( k h ) / s i n h ( h ) ,  k E ( 1,2, 3 . . . .  ) 

(To prove  this, c ross-mul t ip ly  and  compare  Tay lo r  expans ions  a b o u t  h = 0.) 

Hence  it suffices to check (4.23) for n I = 0 or  equivalent ly ,  

u 2 + 2 A u  + (2 - 1 / A  2) /> 0 (4.24) 

where  

u '--" coshh ,  A "--=2c2/c I = (1 - a ) / a  

Since the roots  of the po lynomia l  in (4.24) are  - 1 / A  a n d  ( l / A )  - 2A we 
see tha t  for A >/ 1 / 2  (i.e., a < 2 /3 ) ,  (4.24) is val id  for  any  u >/ 1 (i.e., any  
h />  0). Hence  0~ E ~(0) for a < 2 / 3 .  On  the o ther  hand ,  for A < 1 / 2  (i.e., 
a > 2 /3 ) ,  (4.24) is val id  p rov ided  

3a - 2 (4.25) u - - c o s h h  ~ > ( 1 / A ) - 2 A  = 1 + a(1 - a)  

W e  m a y  thus take h as in (2.7) a n d  conc lude  that  Pa E ~ (t~). [] 
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